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a b s t r a c t

Quantum transport models for nanodevices using the non-equilibrium Green’s function
method require the repeated calculation of the block tridiagonal part of the Green’s and
lesser Green’s function matrices. This problem is related to the calculation of the inverse
of a sparse matrix. Because of the large number of times this calculation needs to be per-
formed, this is computationally very expensive even on supercomputers. The classical
approach is based on recurrence formulas which cannot be efficiently parallelized. This
practically prevents the solution of large problems with hundreds of thousands of atoms.
We propose new recurrences for a general class of sparse matrices to calculate Green’s
and lesser Green’s function matrices which extend formulas derived by Takahashi and oth-
ers. We show that these recurrences may lead to a dramatically reduced computational
cost because they only require computing a small number of entries of the inverse matrix.
Then, we propose a parallelization strategy for block tridiagonal matrices which involves a
combination of Schur complement calculations and cyclic reduction. It achieves good sca-
lability even on problems of modest size.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Commercial electronic devices are rapidly approaching the scale where quantum mechanical effects are affecting the de-
vice characteristics [1]. For example, nano-transistors in the 10–30 nm range are strongly affected by quantum mechanical
effects such as tunneling and leakage. To allow for continued scaling of silicon technology, new materials are introduced [2]
and new nanomaterials such as nanowires [3] or carbon nanotubes [4] are currently being considered as wires or as active
parts in future generations of transistors. Also, more exotic devices using DNA [5] or other small molecules [6] are currently
under investigation for future use in electronic devices.

To model such devices, it is necessary to apply a quantum mechanical framework [2]. In a system where current flows
from a large reservoir (source) to a large drain, the non-equilibrium Green’s function approach is applicable [7–9]. This is
. All rights reserved.
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a very general framework which can be applied to all the systems mentioned above. This method involves the coupled solu-
tion of the Schrödinger equation for the quantum wave function and the Poisson equation for the electrostatic potential. The
Schrödinger equation can be solved in multiple ways, including using a Kohn–Sham Hamiltonian. The main computational
difficulty of this problem is the self-consistent solution of the Kohn–Sham Hamiltonian and the Poisson equation, which usu-
ally requires an iterative scheme with many iterations. The solution of this system requires the calculation of a Green’s func-
tion which, once discretized, is often written in the matrix form:
Table 1
Notatio

A
aij

N
n
d
AT

Ay

A�y

L;D;U
Aði1 : i2

Aði; j1 :

Aði1 : i2

I
0

G ¼def A�1
; where A ¼def ESo �H� RL � RR ð1Þ
where E is an energy point (a scalar), So is an overlap matrix, H is the Hamiltonian of the system, and RL and RR are the self-
energies. The Green’s function matrix is computed at many energy points and this is computationally quite expensive even
for small matrices. New nanodevices usually require a description at the atomic level; however, their size is large enough
that we may have thousands or even millions of atoms in the active part of the device and thus the dimension of A becomes
very large. In such cases, direct inversion of A becomes impractical, and the application of the non-equilibrium Green’s func-
tion framework requires new efficient parallel algorithms that exploit the sparsity of A. The focus of this paper is the deri-
vation and benchmarking of a new parallel algorithm that efficiently calculates select entries in G and the lesser Green’s
function matrix
G< ¼def GCGy ð2Þ
where C is at this point an arbitrary matrix. Assumptions regarding the non-zero entries of C will be formulated later on. The
lesser Green’s function matrix is needed to account for non-equilibrium and scattering effects. The notations in this paper are
indicated in Table 1.

In most cases not all entries in G and G< are needed. Usually only the diagonal entries of the matrix are required in the
iterative process. This leads to a significant reduction in computational cost, which can be realized using a number of differ-
ent methods [10]. Most of them are related to a technique developed by Takahashi et al. [11–13]. In this approach, a block
LDU factorization of A is computed. Simple algebra shows that:
G ¼ D�1L�1 þ ðI� UÞG ð3Þ
¼ U�1D�1 þ GðI� LÞ ð4Þ
where L, U, and D correspond, respectively, to the lower block unit triangular, upper block unit triangular, and diagonal block
LDU factorization of A. The dense inverse G is treated conceptually as having a block structure based on that of A.

For example, consider the first equation and j > i. The block entry gij resides above the block diagonal of the matrix and
therefore ½D�1L�1�ij ¼ 0. The first equation can then be written as:
gij ¼ �
X
k>i

uikgkj ð5Þ
This allows computing the entry gij if the entries gkjðk > iÞ below it are known. Two similar equations can be derived for the
case j < i and j ¼ i:
gij ¼ �
X
k>i

gik‘kj ð6Þ

gii ¼ d�1
ii �

X
k>i

uikgki ð7Þ
This approach leads to fast backward recurrences, as shown in [12].
ns used in this paper.

matrix
block entry ði; jÞ of matrix A; in general, a matrix and its block entries are denoted by
the same letter. A block is denoted with a bold lowercase letter while the matrix is
denoted by a bold uppercase letter
number of rows and columns in A
number of blocks in matrix
block size
transpose matrix
transpose conjugate matrix
transpose conjugate of the inverse matrix
block LDU factorization of A

; jÞ block column vector containing rows i1 through i2 in column j of A
j2Þ block row vector containing columns j1 through j2 in row i of A
; j1 : j2Þ sub-matrix containing rows i1 through i2 and columns j1 through j2 of A

identity matrix
all-zero matrix
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The generalization of Takahashi’s method to computing G< is not straightforward. In particular Eqs. (3) and (4) do not
extend to this case. In this paper, we will provide a new way of deriving Eqs. (5)–(7). This derivation will then be extended
to G< for which similar relations will be derived. These recurrences are most efficient when the sparsity graph of C (Eq. (2)) is
a subset of the graph of A, i.e., cij – 0 ) aij – 0.

For the purpose of computer implementation, an important distinction must be made to distinguish what we term 1D, 2D
and 3D problems. In principle, all problems are 3 dimensional. However, if the mesh or device is elongated in one direction,
say z, then the mesh can be split into ‘‘slices” along the z direction. This gives rise to a matrix A with block tridiagonal struc-
ture. The problem is then termed 1 dimensional. Similarly, if the mesh is elongated in two directions, the matrix A assumes a
block penta-diagonal form and the problem is called 2 dimensional.

This paper is organized as follows. We first describe general relations to compute Green’s functions (Sections 2 and 3).
These are applicable to meshes with arbitrary connectivity. In Section 4, we calculate the computational cost of these ap-
proaches for 1D and 2D Cartesian meshes and for discretizations involving nearest neighbor nodes only, e.g., a 3 point stencil
in 1D or a 5 point stencil in 2D. We also compare the computational cost of this approach with a recently published method
by Li and Darve (the FIND algorithm [14]).

In Section 5, a parallel implementation of the recurrences for 1 dimensional problems is proposed. The original algorithms
by Takahashi [11] and Svizhenko [10] are not parallel since they are based on intrinsically sequential recurrences. However,
we show that an appropriate reordering of the nodes and definition of the blocks in A lead to a large amount of parallelism. In
practical cases for nano-transistor simulations, we found that the communication time was small and that the scalability
was very good, even for small benchmark cases. This scheme is based on a combination of domain decomposition and cyclic
reduction techniques1 (see, for example, Varga and Hageman [16]). Section 6 has some numerical results.
2. Recurrence formulas for the inverse matrix

Consider a general matrix A written in block form:
1 The
A ¼def A11 A12

A21 A22

� �
ð8Þ
From the LDU factorization of A, we can form the factors LS ¼def A21A�1
11 ;U

S ¼def A�1
11 A12, and the Schur complement

S ¼def A22 � A21A�1
11 A12. The following equation holds for the inverse matrix G ¼ A�1:
G ¼ A�1
11 þ US S�1 LS �US S�1

�S�1 LS S�1

" #
ð9Þ
This equation can be verified by direct multiplication with A. It allows computing the inverse matrix using backward recur-
rence formulas. These formulas can be obtained by considering step i of the LDU factorization of A, which has the following
form:
A ¼
Lð1 : i� 1;1 : i� 1Þ 0

Lði : n;1 : i� 1Þ I

� � Dð1 : i� 1;1 : i� 1Þ 0

0 Si

" #
Uð1 : i� 1;1 : i� 1Þ Uð1 : i� 1; i : nÞ

0 I

� �
ð10Þ
The Schur complement matrices Si are defined by this equation for all i. From Eq. (10), the first step of the LDU factorization
of Si is the same as the iþ 1th step in the factorization of A:
Si ¼
I 0

Lðiþ 1 : n; iÞ I

� �
dii 0
0 Siþ1

� �
I Uði; iþ 1 : nÞ
0 I

� �
ð11Þ
Combining Eqs. (9) and (11) with the substitutions:
A11 ! dii US ! Uði; iþ 1 : nÞ
S! Siþ1 LS ! Lðiþ 1 : n; iÞ
we arrive at:
½Si��1 ¼ d�1
ii þ Uði; iþ 1 : nÞ ½Siþ1��1 Lðiþ 1 : n; iÞ �Uði; iþ 1 : nÞ ½Siþ1��1

�½Siþ1��1 Lðiþ 1 : n; iÞ ½Siþ1��1

" #
From Eq. (9), we have:
½Si��1 ¼ Gði : n; i : nÞ; and ½Siþ1��1 ¼ Gðiþ 1 : n; iþ 1 : nÞ
method of cyclic reduction was first proposed by Schröder in 1954 and published in German [15].



Fig. 1. Schematics of how the recurrence formulas are used to calculate G.
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We have therefore proved the following backward recurrence relations:
Gðiþ 1 : n; iÞ ¼ �Gðiþ 1 : n; iþ 1 : nÞLðiþ 1 : n; iÞ
Gði; iþ 1 : nÞ ¼ �Uði; iþ 1 : nÞGðiþ 1 : n; iþ 1 : nÞ
gii ¼ d�1

ii þ Uði; iþ 1 : nÞGðiþ 1 : n; iþ 1 : nÞLðiþ 1 : n; iÞ
ð12Þ
starting from gnn ¼ d�1
nn . These equations are identical to Eqs. (5)–(7), respectively. A recurrence for i ¼ n� 1 down to i ¼ 1

can therefore be used to calculate G. See Fig. 1.
We have assumed that the matrices produced in the algorithms are all invertible (when required), and this may not be

true in general. However, this has been the case in all practical applications encountered by the authors so far, for problems
originating in electronic structure theory.

By themselves, these recurrence formulas do not lead to any reduction in the computational cost. However, we now show
that even though the matrix G is full, we do not need to calculate all the entries. We denote Lsym and Usym the lower and
upper triangular factors in the symbolic factorization of A. The non-zero structure of ðLsymÞT and ðUsymÞT is denoted by Q, that
is Q is the set of all pairs ði; jÞ such that ‘sym

ji – 0 or usym
ji – 0. Then:
gij ¼

�
P

l>j; ði;lÞ2Q
gil ‘lj if i > j

�
P

k>i; ðk;jÞ2Q
uik gkj if i < j

d�1
ii þ

P
k>i; l>i; ðk;lÞ2Q

uik gkl ‘li if i ¼ j

8>>>>><
>>>>>:

ð13Þ
where ði; jÞ 2 Q .

Proof. Assume that ði; jÞ 2 Q ; i > j, then usym
ji – 0. Assume also that ‘sym

lj – 0; l > j, then by properties of the Gaussian
elimination ði; lÞ 2 Q . This proves the first case. The case i < j can be proved similarly. For the case i ¼ j, assume that usym

ik – 0
and ‘sym

li – 0, then by properties of the Gaussian elimination ðk; lÞ 2 Q . h

This implies that we do not need to calculate all the entries in G but rather only the entries in G corresponding to indices
in Q. This represents a significant reduction in computational cost. The cost of computing the entries in G in the set Q is the
same (up to a constant factor) as the LDU factorization.

Similar results can be derived for the G< matrix:
G< ¼ GCGy ð14Þ
if we assume that C has the same sparsity pattern as A, that is: cij – 0 ) aij – 0. The block cij denotes the block ði; jÞ of matrix C.
To calculate the recurrences, we use the LDU factorization of A introduced previously. The matrix G< satisfies:
AG< Ay ¼ C
Using the same block notations as on page 5, we multiply this equation to the left by ðLDÞ�1 and to the right by ðLDÞ�y:
I US

0 S

" #
G< I 0
ðUSÞy Sy

� �
¼

A11 0
LSA11 I

� ��1

C
A11 0

LSA11 I

� ��y
The equation above can be expanded as:
G<
11 þ USG<

21 þ G<
12ðU

SÞy þ USG<
22ðU

SÞy ðG<
12 þ USG<

22ÞS
y

SðG<
21 þ G<

22ðU
SÞyÞ SG<

22Sy

" #
¼ A�1

11 C11A�y11 A�1
11 ðC12 � C11ðLSÞyÞ

ðC21 � LSC11ÞA�y11 C22 � LSC12 � C21ðLSÞy þ LSC11ðLSÞy

" #

ð15Þ
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Using steps similar to the proof of Eqs. (12) and (15) leads to a forward recurrence that is performed in combination with the
LDU factorization.

Let us define C1 ¼def
C, then, for 1 6 i 6 n� 1:
Ciþ1
L ¼def

Ci
21 � Lðiþ 1 : n; iÞci

11

� �
d�yii ð16Þ

Ciþ1
U ¼def d�1

ii ðCi
12 � ci

11 Lðiþ 1 : n; iÞyÞ ð17Þ

Ciþ1 ¼def
Ci

22 � Lðiþ 1 : n; iÞCi
12 � Ci

21 Lðiþ 1 : n; iÞy þ Lðiþ 1 : n; iÞci
11 Lðiþ 1 : n; iÞy ð18Þ
with
ci
11 Ci

12

Ci
21 Ci

22

" #
¼def

Ci
and the following block sizes (in terms of number of blocks of the sub-matrix):
Sub-matrix
 Size (blocks)
ci
11
 1� 1
Ci
12
 1� ðn� iþ 1Þ
Ci
21
 ðn� iþ 1Þ � 1
Ci
22
 ðn� iþ 1Þ � ðn� iþ 1Þ
Note that the U factors are not needed in this process. Once this recurrence is complete, we can perform a backward
recurrence to find G<, as in Eq. (12). This recurrence can be proved using Eq. (15):
G<ðiþ 1 : n; iÞ ¼ Gðiþ 1 : n; iþ 1 : nÞCiþ1
L � G<ðiþ 1 : n; iþ 1 : nÞUði; iþ 1 : nÞy

G<ði; iþ 1 : nÞ ¼ Ciþ1
U Gðiþ 1 : n; iþ 1 : nÞy � Uði; iþ 1 : nÞG<ðiþ 1 : n; iþ 1 : nÞ

g<ii ¼ d�1
ii ci

11d�yii � Uði; iþ 1 : nÞG<ðiþ 1 : n; iÞ � G<ði; iþ 1 : nÞUði; iþ 1 : nÞy

�Uði; iþ 1 : nÞG<ðiþ 1 : n; iþ 1 : nÞUði; iþ 1 : nÞy

ð19Þ
starting from g<nn ¼ gnn Cn gynn. The proof is omitted but is similar to the one for Eq. (12).
As before, the computational cost can be reduced significantly by taking advantage of the fact that the calculation can be

restricted to indices ði; jÞ in Q. For this, we need to further assume that ði; jÞ 2 Q () ðj; iÞ 2 Q .
First, we observe that the cost of computing Ci;Ci

L;C
i
U for all i is of the same order as the LDU factorization (i.e., equal up to

a constant multiplicative factor). This can be proved by observing that calculating Ciþ1 using Eq. (18) leads to the same fill-in
as the Schur complement calculations for Siþ1.

Second, the set of Eq. (19) for G< can be simplified to:
g<ij ¼

P
l>j; ði;lÞ2Q

gil ½c
jþ1
L �l�j;1 �

P
l>j; ði;lÞ2Q

g<il uyjl if i > j

P
k>i; ðj;kÞ2Q

½ciþ1
U �1;k�i gyjk �

P
k>i; ðk;jÞ2Q

uik g<kj if i < j

d�1
ii ci

11d�yii �
P

k>i; ðk;iÞ2Q
uik g<ki �

P
k>i; ði;kÞ2Q

g<ik uyik

�
P

k>i; l>i; ðk;lÞ2Q
uik g<kl uyil if i ¼ j

8>>>>>>>>>><
>>>>>>>>>>:

ð20Þ
where ði; jÞ 2 Q . (Notation clarification: ci
jl; ½ci

L�jl, and ½ci
U�jl are respectively blocks of Ci;Ci

L, and Ci
U.) The proof of this result is

similar to the one for Eq. (13) for G. The reduction in computational cost is realized because all the sums are restricted to
indices in Q.

Observe that the calculation of G and Ci depends only on the LDU factorization, while the calculation of G< depends also
on Ci and G.
3. Sequential algorithm for 1D problems

In this section, we present a sequential implementation of the relations presented above, for 1D problems. Section 5 will
discuss the parallel implementation.

In 1 dimensional problems, matrix A assumes a block tridiagonal form. The LDU factorization is obtained using the fol-
lowing recurrences:
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‘iþ1;i ¼ aiþ1;i d�1
ii ð21Þ

ui;iþ1 ¼ d�1
ii ai;iþ1 ð22Þ

diþ1;iþ1 ¼ aiþ1;iþ1 � aiþ1;i d�1
ii ai;iþ1 ¼ aiþ1;iþ1 � ‘iþ1;i ai;iþ1 ¼ aiþ1;iþ1 � aiþ1;i ui;iþ1 ð23Þ
From Eq. (13), the backward recurrences for G are given by:
giþ1;i ¼ �giþ1;iþ1 ‘iþ1;i ð24Þ
gi;iþ1 ¼ �ui;iþ1 giþ1;iþ1 ð25Þ
gii ¼ d�1

ii þ ui;iþ1 giþ1;iþ1 ‘iþ1;i ¼ d�1
ii � gi;iþ1 ‘iþ1;i ¼ d�1

ii � ui;iþ1 giþ1;i ð26Þ
starting with gnn ¼ d�1
nn . To calculate G<, we first need to compute Ci. Considering only the non-zero entries in the forward

recurrence Eqs. (16)–(18), we need to calculate:
ciþ1
L ¼defðciþ1;i � ‘iþ1;i c

iÞd�yii

ciþ1
U ¼def d�1

ii ðci;iþ1 � ci ‘yiþ1;iÞ

ciþ1 ¼def
ciþ1;iþ1 � ‘iþ1;i ci;iþ1 � ciþ1;i ‘

y
iþ1;i þ ‘iþ1;i c

i ‘yiþ1;i
starting from c1 ¼def
c11 (the (1,1) block in matrix C); ci; ci

L, and ci
U are 1� 1 blocks. For simplicity, we have shortened the nota-

tions. The blocks ci; ci
L, and ci

U are in fact the (1,1) block of Ci;Ci
L, and Ci

U.
Once the factors L;U;G; ci; ci

L, and ci
U have been computed, the backward recurrence Eq. (19) for G< can be computed:
g<iþ1;i ¼ giþ1;iþ1 ciþ1
L � g<iþ1;iþ1 uyi;iþ1

g<i;iþ1 ¼ ciþ1
U gyiþ1;iþ1 � ui;iþ1 g<iþ1;iþ1

g<ii ¼ d�1
ii ci d�yii � ui;iþ1 g<iþ1;i � g<i;iþ1 uyi;iþ1 � ui;iþ1 g<iþ1;iþ1 uyi;iþ1
starting from g<nn ¼ gnn cn gynn.
These recurrences are the most efficient way to calculate G and G< on a sequential computer. On a parallel computer, this

approach is of limited use since there is little room for parallelization. In Section 5 we describe a scalable algorithm to per-
form the same calculations in a truly parallel fashion.
4. Computational cost for 1D and 2D cartesian meshes with nearest neighbor stencils

In this section, we determine the computational cost of the sequential algorithms. From the recurrence relations (13) and
(20), one can prove that the computational cost of calculating G and G< has the same scaling with problem size as the LDU
factorization. If one uses a nested dissection ordering associated with the mesh [17], we obtain the following costs for Carte-
sian grids assuming a local discretization stencil:
Dimension
 Cost
1D
 Oðnd3Þ

2D (square grid)
 Oðn3=2 d3Þ

3D (cubic grid)
 Oðn2 d3Þ
We now do a more detailed analysis of the computational cost and a comparison with the FIND algorithm of Li et al. [14].
This algorithm comprises an LDU factorization and a backward recurrence.

For the 1D case, the LDU factorization needs 4d3 flops for each column: d3 for computing d�1
ii ; d

3 for ‘iþ1;i; d
3 for ui;iþ1,

and d3 for diþ1;iþ1. So the total computational cost of LDU factorization is 4nd3 flops. Following Eq. (13), the cost of the
backward recurrence is 3nd3. Note that the explicit form of d�1

ii is not needed in the LDU factorization. However, the ex-
plicit form of d�1

ii is needed for the backward recurrence and computing it in the LDU factorization reduces the total cost.
In the above analysis, we have therefore included the cost d3 of obtaining d�1

ii during the LDU factorization. The total cost
in 1D is therefore:
7nd3
:

For the 2D case, similar to the nested dissection method [17] and FIND algorithm [14], we decompose the mesh in a hier-
archical way. See Fig. 2. First we split the mesh in two parts (see the upper and lower parts of the mesh on the right panel
of Fig. 2). This is done by identifying a set of nodes called the separator. They are numbered 31 in the right panel. The sep-
arator is such that it splits the mesh into 3 sets: set s1; s2 and the separator s itself. It satisfies the following properties: (i)



Fig. 2. The cluster tree (left) and the mesh nodes (right) for mesh of size 15� 15. The number in each tree node indicates the cluster number. The number in
each mesh node indicates the cluster it belongs to.
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aij ¼ 0 if i belongs to s1 and j to s2, and vice versa (this is a separator set); (ii) for every i in s, there is at least one index j1 in s1

and one index j2 in s2 such that aij1 – 0 and aij2 – 0 (the set is minimal). Once the mesh is split into s1 and s2 the process is
repeated recursively, thereby building a tree decomposition of the mesh. In Fig. 2, clusters 17–31 are all separators [17].
When we perform the LDU factorization, we eliminate the nodes corresponding to the lower level clusters first and then
those in the higher level clusters.

Compared to nested dissection [17], we use vertical and horizontal separators instead of cross shaped separators to make
the estimates of computational cost easier to derive. Compared to FIND [14], we use single separators j here instead of double
separators k since we do not need additional ‘‘independence” among clusters as required in [14] for multiple LU factoriza-
tions. See [14] for additional details regarding this distinction.

To estimate the computational cost, we need to consider the boundary nodes of a given cluster. Boundary nodes are nodes
of a cluster that are connected to nodes outside the cluster. Since the non-zero pattern of the matrix changes as the elimi-
nation is proceeding, we need to consider the evolving connectivity of the mesh. For example, the nodes labeled 22 become
connected to nodes 27 and 30 after nodes 11 and 12 have been eliminated; similarly, the nodes 20 become connected to
nodes 26, 31 and 29. This is shown in Fig. 2. For more details, see [17,14].

Once the separators and boundaries are determined, we see that the computational cost of eliminating a separator is
equal to sb2 þ 2s2bþ 1

3 s3 ¼ sðbþ sÞ2 � 2
3 s3 flops, where s is the number of nodes in the separator set and b is the number

of nodes in the boundary set. As in the 1D case, we include the cost for d�1
ii .

To make it simple, we focus on a 2D square mesh with N nodes and the typical nearest neighbor connectivity. If we ignore
the effect of the boundary of the mesh, the size of the separators within a given level is fixed. If the ratio b=s is constant, then
the cost for each separator is proportional to s3 and the number of separators is proportional to N=s2, so the cost for each level
doubles every two levels. The computational costs thus form a geometric series and the top level cost dominates the total
cost.

When we take the effect of the mesh boundary in consideration, the value of b for a cluster near the boundary of the mesh
needs to be adjusted. For lower levels, such clusters form only a small fraction of all the clusters and thus the effect is not
significant. For top levels, however, such effect cannot be ignored. Since the cost for the top levels dominates the total cost,
we need to calculate the computational cost for top levels more precisely.

Table 2 shows the cost for the top level clusters. The last two rows are the upper bound of the total cost for the rest of the
small clusters.

If we compute the cost for each level and sum them together, we obtain a cost of 24:9N3=2 flops for the LDU factorization.
For the backward recurrence, we have the same sets of separators. Each node in the separator is connected to all the other

nodes in the separator and all the nodes in the boundary set. Since we have an upper triangular matrix now, when we deal
with a separator of size s with b nodes on the boundary, the number of non-zero entries in each row increases from b to sþ b.
As a result, the cost for computing Eq. (13) is 3 b2sþ bs2 þ 1

3 s3
� �

flops for each step. The total computational cost for the back-
ward recurrence is then 61:3N3=2 flops. The costs for each type of clusters are also listed in Table 2.

Adding together the cost of the LDU factorization and the backward recurrence, the total computational cost for the algo-
rithm is 86:2N3=2 flops. For FIND, the cost is 147N3=2 flops [18]. Note that these costs are for the serial version of the two
algorithms. Although the cost is reduced roughly by half compared to FIND, the parallelization of FIND is different and there-
fore the running time of both algorithms on parallel platforms may scale differently.



Table 2
Estimate of the computational cost for a 2D square mesh for different cluster sizes. The size is in unit of N1=2. The cost is in unit of N3=2 flops.

Size of cluster Cost per cluster Level Number of clusters

Separator Boundary LDU Back. Recurr.

1/2 1 1.042 2.375 1 2
1/2 1 1.042 2.375 2 4
1/4 5/4 0.552 1.422 3 4
1/4 3/4 0.240 0.578 3 4
1/4 1 0.380 0.953 4 4
1/4 3/4 0.240 0.578 4 8
1/4 1/2 0.130 0.297 4 4
1/8 3/4 0.094 0.248 5 8
1/8 5/8 0.069 0.178 5 24
1/8 1/2 0.048 0.119 6 64
1/16 3/8 0.012 0.031 7 128
1/8 1/8 0.048 0.119 8 . . . 664
1/16 3/8 0.012 0.031 9 . . . 6128
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We now focus on the implementation of these recurrence relations for the calculation of G in the 1D case on a parallel
computer. Similar ideas can be applied to the calculation of G<. The parallel implementation of the 2D case is significantly
more complicated and will be the subject of another paper.

5. Parallel algorithm for 1D problems

We present a parallel algorithm for the calculation of the Green’s function matrix G typically encountered in electronic
structure calculations where the matrix A (cf. Eq. (1)) is assumed to be an n� n block matrix, and in block tridiagonal form
as shown by
A ¼

a11 a12

a21 a22 a23

a32 a33 a34

. .
. . .

. . .
.

2
66664

3
77775: ð27Þ
where each block element aij is a dense complex matrix. In order to develop a parallel algorithm, we assume that we have at
our disposal a total of P processing elements (e.g., single core on a modern processor). We also consider that we have pro-
cesses with the convention that each process is associated with a unique processing element, and we assume that they can
communicate among themselves. The processes are labeled p0; p1; . . . ; pP�1. The block tridiagonal structure A is then distrib-
uted among these processes in a row-striped manner, as illustrated in Fig. 3.

Thus each process is assigned ownership of certain contiguous rows of A. This ownership arrangement, however, also ex-
tends to the calculated blocks of the inverse G, as well as any LU factors determined during calculation in L and U. The man-
ner of distribution is an issue of load balancing, and will be addressed later in the paper.

Furthermore, for illustrative purposes, we present the block matrix structures as having identical block sizes throughout.
The algorithm presented has no condition for the uniformity of block sizes in A, and can be applied to a block tridiagonal
matrix as presented on the right in Fig. 3. The size of the blocks throughout A, however, does have consequences for adequate
load balancing.
Fig. 3. Two different block tridiagonal matrices distributed among 4 different processes, labeled p0; p1; p2 and p3.



Fig. 4. The distinct phases of operations performed by the hybrid method in determining TridAfGg, the block tridiagonal portion of G with respect to the
structure of A. The block matrices in this example are partitioned across 4 processes, as indicated by the horizontal dashed lines.
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For the purposes of electronic structure applications, we only require the portion of the inverse G with the same block
tridiagonal structure of A. We express this portion as TridAfGg.

The parallel algorithm is a hybrid technique in the sense that it combines the techniques of cyclic reduction and Schur
block decomposition, but where we now consider individual elements to be dense matrix blocks. The steps taken by the hy-
brid algorithm to produce TridAfGg is outlined in Fig. 4.

The algorithm begins with our block tridiagonal matrix A partitioned across a number of processes, as indicated by the
dashed horizontal lines. Each process then performs what is equivalent to calculating a Schur complement on the rows/
blocks that it owns, leaving us with a reduced system that is equivalent to a smaller block tridiagonal matrix ASchur. This
phase, which we name the Schur reduction phase, is entirely devoid of interprocess communication.

It is on this smaller block tridiagonal structure that we perform block cyclic reduction (BCR), leaving us with a single block
of the inverse, gkk. This block cyclic reduction phase involves interprocess communication.

From gkk we then produce the portion of the inverse corresponding to GBCR ¼ TridASchurfGg in what we call the block cyclic
production phase. This is done using Eq. (12). Finally, using GBCR, we can then determine the full tridiagonal structure of G
that we desire without any further need for interprocess communication through a so-called Schur production phase. The
block cyclic production phase and Schur production phase are a parallel implementation of the backward recurrences in
Eq. (12).

5.1. Schur phases

In order to illustrate where the equations for the Schur reduction and production phases come from, we perform them for
small examples in this section. Furthermore, this will also serve to illustrate how our hybrid method is equivalent to unpi-
voted block Gaussian elimination.

5.1.1. Corner block operations
Looking at the case of Schur corner reduction, we take the following block form as our starting point:
A ¼
aii aij 0
aji ajj H

0 H H

2
64

3
75;
where H denotes some arbitrary entries (zero or not). In eliminating the block aii, we calculate the following LU factors
‘ji ¼ ajia�1
ii

uij ¼ a�1
ii aij
and we determine the Schur block
s ¼def ajj � ‘jiaij:



Fig. 5. Three different schemes that represent a corner production step undertaken in the BCR production phase, where we produce inverse blocks on row/
column i using inverse blocks and LU factors from row/column j.
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Let us now assume that the inverse block gjj has been calculated. We then start the Schur corner production phase in which,
using the LU factors saved from the reduction phase, we can obtain
gji ¼ �gjj‘ji

gij ¼ �uijgjj
(see Eq. (12)) and finally
gii ¼ a�1
ii þ uijgjj‘ji ð28Þ

¼ a�1
ii � uijgji ð29Þ

¼ a�1
ii � gij‘ji: ð30Þ
This production step is visualized in Fig. 5. On the top right of the figure we have the stored LU factors preserved from the
BCR elimination phase. On the top left, bottom right and bottom left we see three different schemes for producing the new
inverse blocks gii;gij and gji from gjj and the LU factors uij and ‘ji, corresponding to Eqs. (28)–(30). A solid arrow indicates
the need for the corresponding block of the inverse matrix and a dashed arrow indicates the need for the corresponding
LU block.

Using this figure, we can determine what matrix blocks are necessary to calculate one of the desired inverse blocks. Look-
ing at a given inverse block, the required information is indicated by the inbound arrows. The only exception is gii which also
requires the block aii.

Three different schemes to calculate gii are possible, since the block can be determined via any of the three equations
Eqs. (28) and (29) or Eq. (30), corresponding respectively to the upper left, lower right and lower left schemes in Fig. 5.

Assuming we have process pi owning row i and process pj owning row j, we disregard choosing the lower left scheme (cf.
Eq. (30)) since the computation of gii on process pi will have to wait for process pj to calculate and send gji. This leaves us with
the choice of either the upper left scheme (cf. Eq. (28)) or bottom right scheme (cf. Eq. (29)) where gjj and ‘ji can be sent
immediately, and both processes pi and pj can then proceed to calculate in parallel.

However, the bottom right scheme (cf. Eq. (29)) is preferable to the top left scheme (cf. Eq. (28)) since it saves an extra
matrix–matrix multiplication. This motivates our choice of using Eq. (29) for our hybrid method.

5.1.2. Center block operations
The reduction/production operations undertaken by a center process begins with the following block tridiagonal form:
A ¼

H H 0 0 0
H aii aij 0 0
0 aji ajj ajk 0
0 0 akj akk H

0 0 0 H H

2
6666664

3
7777775
:
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Through a block permutation matrix P, we can transform it to the form

which we interpret as a 2� 2 block matrix as indicated by the partitioning lines in the expression. We then perform a Schur
complement calculation as done earlier for a corner process, obtaining parts of the LU factors
Fig. 6.
elemen
Part of the L factorðcolumn jÞ :
aij

akj

� 	
a�1

jj ¼
‘ij

‘kj

� 	
ð31Þ

Part of the U factorðrow jÞ : a�1
jj ðaji ajkÞ ¼ ðuji ujkÞ: ð32Þ
This then leads us to the 2� 2 block Schur matrix
aii 0
0 akk

� 	
�

‘ij

‘kj

� 	
ðaji ajkÞ ¼

aii � ‘ijaji �‘ijajk

�‘kjaji akk � ‘kjajk

� 	
ð33Þ
Let us assume that we have now computed the following blocks of the inverse G:
gii gik

gki gkk

� 	
With this information, we can use the stored LU factors to determine the other blocks of the inverse [see Eq. (12)], getting
ðgji gjkÞ ¼ �ðuji ujkÞ
gii gik

gki gkk

� 	
¼ ð�ujigii � ujkgki � ujigik � ujkgkkÞ
The three different schemes that represent a center production step undertaken in the BCR production phase, where we produce inverse block
ts on row/column j using inverse blocks and LU factors from rows i and k.
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and
gij

gkj

 !
¼ �

gii gik

gki gkk

� 	
‘ij

‘kj

� 	
¼

�gii‘ij � gik‘kj

�gki‘ij � gkk‘kj

� 	
:

The final block of the inverse is obtained as
gjj ¼ a�1
jj þ ðuji ujkÞ

gii gik

gki gkk

� 	
‘ij

‘kj

� 	
¼ a�1

jj � ðgji gjkÞ
‘ij

‘kj

� 	
¼ a�1

jj � gji‘ij � gjk‘kj: ð34Þ
The Schur production step for a center block is visualized in Fig. 6, where the arrows are given the same significance as for a
corner production step shown in Fig. 5.

Again, three different schemes arise since gjj can be determined via one of the following three equations, depending on
how gjj from Eq. (34) is calculated:
gjj ¼ a�1
jj þ ujigii‘ij þ ujkgki‘ij þ ujigik‘kj þ ujkgkk‘kj ð35Þ

gjj ¼ a�1
jj � ujigij � ujkgkj ð36Þ

gjj ¼ a�1
jj � gji‘ij � gjk‘kj ð37Þ
where Eqs. (35)–(37) corresponds to the upper left, lower right and lower left schemes in Fig. 6. Similarly motivated as
for the corner Schur production step, we choose the scheme related to Eq. (37) corresponding to the lower left corner of
Fig. 6.
5.2. Block cyclic reduction phases

Cyclic reduction operates on a regular tridiagonal linear system by eliminating the odd-numbered unknowns recursively,
until only a single unknown remains, uncoupled from the rest of the system. One can then solve for this unknown, and from
there descend down the recursion tree and obtain the full solution. In the case of block cyclic reduction, the individual scalar
unknowns correspond to block matrices, but the procedure operates in the same manner. For our application, the equations
are somewhat different. We have to follow Eq. (12) but otherwise the pattern of computation is similar. The basic operation
in the reduction phase of BCR is the row-reduce operation, where two odd-indexed rows are eliminated by row operations
towards its neighbor. Starting with the original block tridiagonal form,
H H H 0 0 0 0
0 aih aii aij 0 0 0
0 0 aji ajj ajk 0 0
0 0 0 akj akk akl 0
0 0 0 0 H H H

0
BBBBBB@

1
CCCCCCA
;

we reduce from the odd rows i and k towards the even row j, eliminating the coupling element aji by a row operation involv-
ing row i and the factor ‘ji ¼ ajia�1

ii . Likewise, we eliminate ajk by a row operation involving row k and the factor ‘jk ¼ ajka�1
kk ,

and obtain
H H H 0 0 0 0
0 aih aii aij 0 0 0
0 aBCR

jh 0 aBCR
jj 0 aBCR

jl 0
0 0 0 akj akk akl 0
0 0 0 0 H H H

0
BBBBBB@

1
CCCCCCA
; ð38Þ
where the new and updated elements are given as
aBCR
jj ¼def ajj � ‘jiaij � ‘jkakj; ð39Þ

aBCR
jh ¼def�‘jiaih; ð40Þ

aBCR
jl ¼def�‘jkakl: ð41Þ
This process of reduction continues until we are left with only one row, namely aBCR
kk , where k denotes the row/column we

finally reduce to. From aBCR
kk , we can determine one block of the inverse via gkk ¼ ðaBCR

kk Þ
�1. From this single block, the back-

ward recurrence (12) produces all the other blocks of the inverse. The steps are similar to those in Sections 5.1.1 and 5.1.2.
The key difference between the Schur phase and BCR is in the pattern of communication in the parallel implementation. The
Schur phase is embarrassingly parallel while BCR requires communication at the end of each step.



Fig. 7. Permutation for a 31� 31 block matrix A (left), which shows that our Schur reduction phase is identical to an unpivoted Gaussian elimination on a
suitably permuted matrix PAP (right). Colors are associated with processes. The diagonal block structure of the top left part of the matrix (right panel)
shows that this calculation is embarrassingly parallel.

Fig. 8. BCR corresponds to an unpivoted Gaussian elimination of A with permutation of rows and columns.

Fig. 9. Following a Schur reduction phase on the permuted block matrix PAP, we obtain the reduced block tridiagonal system in the lower right corner (left
panel). This reduced system is further permuted to a form shown on the right panel, as was done for BCR in Fig. 8.
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6. Numerical results

6.1. Stability

Our elimination algorithm is equivalent to an unpivoted Gaussian elimination on a suitably permuted matrix PAP for
some permutation matrix P [19,20].

Figs. 7 and 8 show the permutation corresponding to the Schur phase and the cyclic reduction phase for a 31� 31 block
matrix A.

In the case of our algorithm, both approaches are combined. The process is shown on Fig. 9. Once the Schur reduction
phase has completed on A, we are left with a reduced block tridiagonal system. The rows and columns of this tridiagonal
system are then be permuted following the BCR pattern.

Our hybrid method is therefore equivalent to an unpivoted Gaussian elimination. Consequently, the stability of the meth-
od is dependent on the stability of using the diagonal blocks of A as pivots in the elimination process, as is the case for block
cyclic reduction.

6.2. Load balancing

For the purposes of load balancing, we will assume that blocks in A are of equal size. Although this is not the case in gen-
eral, it is still of use for the investigation of nanodevices that tend to be relatively homogeneous and elongated, and thus
giving rise to block tridiagonal matrices A with many diagonal blocks and of relatively identical size. Furthermore, this
assumption serves as an introductory investigation on how load balancing should be performed, eventually preparing us
for a future investigation of the general case.
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Fig. 10. Walltime for our hybrid algorithm and pure BCR for different as as a basic load balancing parameter. A block tridiagonal matrix A with n ¼ 512
diagonal blocks, each of dimension m ¼ 256, was used for these tests.
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There are essentially two sorts of execution profiles for a process: one for corner processes (p0 and pP�1) and for central
processes. The corner processes perform operations described in Section 5.1.1, while the center processes perform those out-
lined in 5.1.2.

By performing an operation count under the assumption of equal block sizes throughout A, and assuming an LU factor-
ization cost equal to 2

3 d3 operations and a matrix–matrix multiplication cost of 2d3 operations (for a matrix of dimension d,
cf. [21]), we estimate the ratio a of number of rows for a corner process to number of rows for central processes. An analysis
of our algorithm predicts a ¼ 2:636 to be optimal [22]. For the sake of completeness, we investigate the case of a ¼ 1, where
each process is assigned the same number of rows, while the values a ¼ 2 and a ¼ 3 are chosen to bracket the optimal
choice.
6.3. Benchmarks

The benchmarking of the algorithms presented in this paper was carried out on a Sun Microsystems Sun Fire E25K
server. This machine comprises 72 UltraSPARC IV+ dual-core CPUs, yielding a total of 144 CPU cores, each running at
1.8 GHz. Each dual-core CPU had access to 2 MB of shared L2-cache and 32 MB shared L3-cache, with a final layer of
416 GB of RAM.

We estimated that in all probability each participating process in our calculations had exclusive right to a single CPU core.
There was no guarantee however that the communication network was limited to handling requests from our benchmarked
algorithms. It is in fact highly likely that the network was loaded with other users’ applications, which played a role in reduc-
ing the performance of our applications. We were also limited to a maximum number of CPU cores of 64.
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Fig. 11. Speedup curves for our hybrid algorithm and pure BCR for different as. A block tridiagonal matrix A with n ¼ 512 diagonal blocks, each of
dimension m ¼ 256, was used.



Fig. 12. The total execution time for our hybrid algorithm is plotted against the number of processes P. The choice a ¼ 1 gives poor results except when the
number of processes is large. Other choices for a give similar results. The same matrix A as before was used.
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The execution time was measured for a pure block cyclic reduction algorithm (cf. Algorithm 1) in comparison with our
hybrid algorithm (cf. Algorithm 2). The walltime measurements for running these algorithms on a block tridiagonal matrix
A with n ¼ 512 block rows with blocks of dimension m ¼ 256 is given in Fig. 10 for four different load balancing values
a ¼ f1;2;2:636;3g. The total number of processes used for execution was P ¼ f1;2;4;8;16;32;64g in all cases.

The speedup results corresponding to these walltime measurements are given in Fig. 11 for the four different load bal-
ancing values of a. For a uniform distribution where a ¼ 1, a serious performance hit is experienced for P ¼ 4. This is due
to a poor load balance, as the two corner processes p0 and p3 terminate their Schur production/reduction phases much soon-
er than the central processes p1 and p2. It is then observed that choosing a equal 2, 2.636 or 3 eliminates this dip in speedup.
The results appear relatively insensitive to the precise choice of a.

It can also be seen that as the number of processes P increases for a fixed n, a greater portion of execution time is attrib-
uted to the BCR phase of our algorithm. Ultimately higher communication and computational costs of BCR over the embar-
rassingly parallel Schur phase dominate, and the speedup curves level off and drop, regardless of a.

In an effort to determine which load balancing parameter a is optimal, we compare the walltime execution measure-
ments for our hybrid algorithm in Fig. 12. From this figure, we can conclude that a uniform distribution with a ¼ 1 leads
to poorer execution times; other values of a produce improved but similar results, particularly in the range P ¼ 4 . . . 8, which
is a common core count in modern desktop computers.
7. Conclusion

We have proposed new recurrence formulas to calculate certain entries of the inverse of a sparse matrix. This problem has
application in quantum transport and quantum mechanical models, to calculate Green’s and lesser Green’s function matrices
for example. This calculation scales like N3 for a matrix of size N using a naive algorithm. We have shown that the compu-
tational cost can be reduced by orders of magnitude using novel recurrences Eqs. (13) and (20). This is an extension of the
work of K. Takahashi [11] and others.

A hybrid algorithm for the parallel implementation of these recurrences has been developed that performs well on many
processes. This hybrid algorithm combines Schur complement calculations that are embarrassingly parallel with block cyclic
reduction. The performance depends on the problem size and the efficiency of the computer cluster network. On a small test
case, we observed scalability up to 32 processes. For electronic structure calculations using density functional theory (DFT),
this parallel algorithm can be combined with a parallelization over energy points. This will allow running DFT computations
for quantum transport with unprecedented problem sizes.

We note that more efficient parallel implementations of cyclic reduction exist. In particular they can reduce the total
number of passes in the algorithm. This will be the object of a future paper.
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Appendix A. Algorithms

This section presents the algorithms of block cyclic reduction and the hybrid method used in this paper. The algorithm
INVERSEBCR given in Algorithm 1 calculates the block tridiagonal portion of the inverse of A, namely TridAfGg, via a pure block
cyclic reduction (BCR) approach. The algorithm performs a BCR reduction on A on line 2. This leaves us with a single, final
block that can be inverted in order to determine the first block of the inverse, gkk. From here, a call on line 4 takes care of
reconstructing the block tridiagonal portion of the inverse G using this first block of the inverse gkk, and the stored LU factors
in L and U.

Algorithm 1. INVERSEBCR(A)
1: iBCR  f1;2; . . . ;ng BCR is performed over all of A
2: A; L;U REDUCEBCR (A,L,U, iBCR)
3: gkk ¼ a�1

kk
4: G PRODUCE BCRðA; L;U;G; iBCRÞ
6: return G
The algorithm INVERSEHYBRID returns the same result of the block tridiagonal portion of the inverse, but by using the hybrid
technique presented in this paper. A significant difference between this algorithm and that of pure BCR is the specification of
which row indices iBCR the hybrid method should reduce the full block matrix A to, before performing BCR on this reduced
block tridiagonal system.

This variable of iBCR is explicitly used as an argument in the BCR phases, and implicitly in the Schur phases. The implicit
form is manifested through the variables top and bot, that store the value of the top and bottom row indices ‘‘owned” by one
of the participating parallel processes.

Algorithm 2. INVERSEHYBRID (A, iBCR)
1: A; L;U REDUCESCHUR(A)
2: A; L;U REDUCEBCR(A,L,U,iBCR)
3: gkk ¼ a�1

kk
4: G PRODUCEBCR(A,L,U,G,iBCR)
5: G PRODUCESchur(A,L,U,G)
6: return G
A.1. BCR reduction functions

The reduction phase of BCR is achieved through the use of the following two methods. The method REDUCEBCR, given in
Algorithm 3, takes a block tridiagonal A and performs a reduction phase over the supplied indices given in iBCR. The associ-
ated LU factors are then stored appropriately in matrices L and U.

REDUCEBCR loops over each of the levels on line 3, and eliminates the odd-numbered rows given by line 4. This is accom-
plished by calls to the basic reduction method REDUCE on line 6.

Algorithm 3. REDUCEBCR(A,L,U,iBCR)
1: k lengthofiBCR size of the ‘‘reduced” system
2: h log2ðkÞ height of the binary elimination tree
3: for level ¼ 1 up to h do
4: ielim  determine the active rows
5: for row ¼ 1 up to length of ielim do eliminate odd active rows
6: A; L;U REDUCE(A,L,U,row,level,ielim)
7: return A, L, U
The core operation of the reduction phase of BCR are the block row updates performed by the method REDUCE given in
Algorithm 4, where the full system A is supplied along with the LU block matrices L and U. The value row is passed along
with ielim, telling us which row of the block tridiagonal matrix given by the indices in ielim we want to reduce towards.
The method then looks at neighbouring rows based on the level level of the elimination tree we are currently at, and then
performs block row operations with the correct stride.
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Algorithm 4. REDUCE(A,L,U,row,level,ielim)
1: h; i; j; k; l get the working indices
2: if i P ielim½1� then if there is a row above
3: uij  a�1

ii aBCR
ij

4: ‘ji  ajia�1
ii

5: ajj  ajj � ‘jiaij

6: if aih exists then if the row above is not the ‘‘top” row
7: ajh  �‘jiaih

8: if k 6 ielim½end� then if there is a row below
9: ukj  a�1

kk akj

10: ‘jk  ajka�1
kk

11: ajj  ajj � ‘jkakj

12: if akl exists then if the row below is not the ‘‘bottom” row
13: ajl  �‘jkakl

14: return A,L,U
A.2. BCR production functions

The production phase of BCR is performed via a call to PRODUCEBCR given in Algorithm 5. The algorithm takes as input an
updated matrix A, associated LU factors, an inverse matrix G initialized with the first block inverse gkk, and a vector of indices
iBCR defining the rows/columns of A on which BCR is to be performed.

The algorithm works by traversing each level of the elimination tree (line 1), where an appropriate striding length is
determined and an array of indices iprod is generated. This array is a subset of the overall array of indices iBCR, and is deter-
mined by considering which blocks of the inverse have been computed so far. The rest of the algorithm then works through
each of these production indices iprod, and calls the auxiliary methods CORNERPRODUCE and CENTERPRODUCE.

Algorithm 5. PRODUCEBCR(A,L,U,G,iBCR)
1: for level ¼ h down to 1 do
2: stride 2level � 1
3: iprod  determine the rows to be produced
4: for i ¼ 1 up to length of iprod do
5: kto  iBCR½iprod½i��
6: if i ¼ 1 then
7: kfrom  iBCR½iprod½i� þ stride�
8: G CORNERProduce(A,L,U,G,kfrom,kto)
9: if i – 1 and i ¼ length of iprod then
10: if iprod½end� 6 length of iBCR � stride then
11: kabove  iBCR½iprod½i� � stride�
12: kbelow  iBCR½iprod½i� þ stride�
13: G CENTERPRODUCE(A,L,U,G,kabove, kto,kbelow)
14: else
15: kfrom  iBCR½iprod½i� � stride�
16: G CORNERPRODUCE(A,L,U,G, kfrom; ktoÞ
17: if i – 1 and i – length of iprod then
18: kabove  iBCR½iprod½i� � stride�
19: kbelow  iBCR½iprod½i� þ stride�
20: G CENTERPRODUCE(A,L,U,G, kabove; kto; kbelow)
21: return G
The auxiliary methods CORNERPRODUCE and CENTERPRODUCE are given in Algorithms 6 and 7.

Algorithm 6. CORNERPRODUCE(A,L,U,G, kfrom; kto)
1: gkfrom ;kto
 �gkfrom;kfrom

‘kfrom;kto

2: gkto ;kfrom
 �ukto ;kfrom

gkfrom ;kfrom

3: gkto ;kto
 a�1

kto ;kto
� gkto ;kfrom

‘kfrom ;kto

4: return G
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1: gkabove ;kto
 �gkabove ;kabove

‘kabove ;kto � gkabove ;kbelow
‘kbelow ;kto

2: gkbelow ;kto
 �gkbelow ;kabove

‘kabove ;kto � gkbelow ;kbelow
‘kbelow ;kto

3: gkto ;kabove
 �ukto ;kabove

gkabove ;kabove
� ukto ;kbelow

gkbelow ;kabove

4: gkto ;kbelow
 �ukto ;kabove

gkabove ;kbelow
� ukto ;kbelow

gkbelow ;kbelow

5: gkto ;kto
 a�1

kto ;kto
� gkto ;kabove

‘kabove ;kto � gkto ;kbelow
‘kbelow ;kto

6: return G
A.3. Hybrid auxiliary functions

Finally, this subsection deals with the auxiliary algorithms introduced by our hybrid method. Prior to any BCR operation,
the hybrid method applies a Schur reduction to A in order to reduce it to a smaller block tridiagonal system. This reduction is
handled by REDUCESCHUR given in Algorithm 8, while the final production phase to generate the final block tridiagonal TridAfGg
is done by PRODUCESCHUR in Algorithm 9.

Algorithm 8. REDUCESCHUR(A)
1: if myPID=0 and P > 1 then corner eliminate downwards
2: for i ¼ topþ 1 up to bot do
3: ‘i;i�1  ai;i�1a�1

i�1;i�1
4: ui�1;i  a�1

i�1;i�1ai�1;i

5: aii  aii � ‘i;i�1ai�1;i

6: if myPID ¼ P � 1 then corner eliminate upwards
7: for i ¼ bot � 1 down to top do
8: ‘i;iþ1  ai;iþ1a�1

iþ1;iþ1
9: uiþ1;i  a�1

iþ1;iþ1aiþ1;i

10: aii  aii � ‘i;iþ1aiþ1;i

11: if myPID – 0 and myPID – P � 1 and P > 1 then center elim. down
12: for i ¼ topþ 2 down to bot do
13: ‘i;i�1  ai;i�1a�1

i�1;i�1
14: ‘top;i�1  atop;i�1a�1

i�1;i�1
15: ui�1;i  a�1

i�1;i�1ai�1;i

16: ui�1;top  a�1
i�1;i�1ai�1;top

17: aii  aii � ‘i;i�1ai�1;i

18: atop;top  atop;top � ‘top;i�1ai�1;top

19: ai;top  �‘i;i�1ai�1;top

20: atop;i  �‘top;i�1ai�1;i

21: return A,L,U
The Schur reduction algorithm takes the full initial block tridiagonal matrix A, and through the implicit knowledge of how
the row elements of A have been assigned to processes, proceeds to reduce A into a smaller block tridiagonal system. This
implicit knowledge is provided by the top and bot variables, which specify the topmost and bottommost row indices for this
process.

The reduction Algorithm 8 is then split into three cases. If the process owns the topmost rows of A, it performs a corner
elimination downwards. If it owns the bottommost rows, it then performs a similar operation, but in an upwards manner.
Finally, if it owns rows that reside in the middle of A, it performs a center reduction operation.

Finally, once the hybrid method has performed a full reduction and a subsequent BCR portion of production, the algo-
rithm PRODUCESCHUR handles the production of the remaining elements of the inverse G.

Algorithm 9. PRODUCESCHUR(A,L,U,G)
if myPID ¼ 0 and P > 1 then corner produce upwards
for i ¼ bot down to topþ 1 do

gi;i�1  �gii‘i;i�1

gi�1;i  �ui�1;igii

gi�1;i�1  a�1
i�1;i�1 � ui�1;igi;i�1

if myPID ¼ P � 1 then corner produce downwards
for i ¼ top up to bot � 1 do
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gi;iþ1  �gii‘i;iþ1

giþ1;i  �uiþ1;igii

giþ1;iþ1  a�1
iþ1;iþ1 � uiþ1;igi;iþ1

if myPID – 0 and myPID – P � 1 and P > 1 then center produce up
gbot;bot�1  �gbot;top‘top;bot�1 � gbot;bot‘bot;bot�1

gbot�1;bot  �ubot�1;botgbot;bot � ubot�1;topgtop;bot

for i ¼ bot � 1 up to topþ 1 do
gtop;i  �gtop;top‘top;i � gtop;iþ1‘iþ1;i

gi;top  �ui;iþ1giþ1;top � ui;topgtop;top

for i ¼ bot � 1 up to topþ 2 do
gii  a�1

ii � ui;topgtop;i � ui;iþ1giþ1;i
gi�1;i  �ui�1;topgtop;i � ui�1;igii

gi;i�1  �gi;top‘top;i�1 � gii‘i;i�1

gtopþ1;topþ1  a�1
topþ1;topþ1 � utopþ1;topgtop;topþ1 � utopþ1;topþ2gtopþ2;topþ1

return G
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